Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$ $2 x-y=\log _b(\sqrt{1080}),$ then $4 x+5 y$ is equal to. . . .
$3$
$4$
$8$
$9$
If ${\log _{12}}27 = a,$ then ${\log _6}16 = $
Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$ Then, the possible value(s) of $\frac{x}{y}$
If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to
If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in
For $y = {\log _a}x$ to be defined $'a'$ must be