Let $a=3 \sqrt{2}$ and $b=\frac{1}{5^{\frac{1}{6}} \sqrt{6}}$. If $x, y \in R$ are such that  $3 x+2 y=\log _a(18)^{\frac{5}{4}} \text { and }$  $2 x-y=\log _b(\sqrt{1080}),$  then $4 x+5 y$ is equal to. . . . 

  • [IIT 2024]
  • A

    $3$

  • B

    $4$

  • C

    $8$

  • D

    $9$

Similar Questions

If ${\log _{12}}27 = a,$ then ${\log _6}16 = $

Let $x, y$ be real numbers such that $x>2 y>0$ and $2 \log (x-2 y)=\log x+\log y$  Then, the possible value(s) of $\frac{x}{y}$

  • [KVPY 2020]

If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to

If ${\log _{0.3}}(x - 1) < {\log _{0.09}}(x - 1)$ then $x \ne 1$ lies in

For $y = {\log _a}x$ to be defined $'a'$ must be

  • [IIT 1990]