If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$
It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$
$\frac{x}{3}+1=\frac{5}{3}$
$\Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad y-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \frac{x}{3}=\frac{2}{3} \Rightarrow y=\frac{1}{3}+\frac{2}{3}$
$\Rightarrow x=2 \Rightarrow y=1$
$\therefore x=2$ and $y=1$
If $A$ and $B$ are two sets, then $A × B = B × A$ iff
Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.
If the set $A$ has $3$ elements and the set $B=\{3,4,5\},$ then find the number of elements in $( A \times B ).$
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cap C)$
If $A \times B=\{(a, x),(a, y),(b, x),(b, y)\} .$ Find $A$ and $B$