If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$
It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$
Since the ordered pairs are equal, the corresponding elements will also be equal.
Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$
$\frac{x}{3}+1=\frac{5}{3}$
$\Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad y-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \frac{x}{3}=\frac{2}{3} \Rightarrow y=\frac{1}{3}+\frac{2}{3}$
$\Rightarrow x=2 \Rightarrow y=1$
$\therefore x=2$ and $y=1$
If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is
If $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, then $n(C) = $
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cap C)$
If $(1, 3), (2, 5)$ and $(3, 3)$ are three elements of $A × B$ and the total number of elements in $A \times B$ is $6$, then the remaining elements of $A \times B$ are
If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c \cup Q^c)^c =$