If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right),$ find the values of $x$ and $y$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is given that $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore, $\frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$

$\frac{x}{3}+1=\frac{5}{3}$

$\Rightarrow \frac{x}{3}=\frac{5}{3}-1 \quad y-\frac{2}{3}=\frac{1}{3}$

$\Rightarrow \frac{x}{3}=\frac{2}{3} \Rightarrow y=\frac{1}{3}+\frac{2}{3}$

$\Rightarrow x=2 \Rightarrow y=1$

$\therefore x=2$ and $y=1$

Similar Questions

If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is

If $n(A) = 4$, $n(B) = 3$, $n(A \times B \times C) = 24$, then $n(C) = $

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$A \times(B \cap C)$

If $(1, 3), (2, 5)$ and $(3, 3)$ are three elements of $A × B$ and the total number of elements in $A \times B$ is $6$, then the remaining elements of $A \times B$ are

If $P,Q$ and $R$ are subsets of a set $A$, then $R × (P^c  \cup  Q^c)^c =$