यदि प्रकाश वेग $(c)$, सार्वत्रिक गुरुत्वाकर्षण नियतांक $[G]$, प्लांक नियतांक $[h]$ को मूल मात्रकों की तरह प्रयुक्त किया जाये तब इस नयी पद्धति में समय की विमा होगी
${G^{1/2}}{h^{1/2}}{c^{ - 5/2}}$
${G^{ - 1/2}}{h^{1/2}}{c^{1/2}}$
${G^{1/2}}{h^{1/2}}{c^{ - 3/2}}$
${G^{1/2}}{h^{1/2}}{c^{1/2}}$
एक ट्यूब की लम्बाई $\ell$ तथा त्रिज्या $r$ है। इसमें टॉरपीन का तेल बहता है। ट्यूब के दोनों सिरों का दाबान्तर $p$ है तथा श्यानता गुणांक है
$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}$
जहाँ ट्यूब के अक्ष से $x$ दूरी पर तेल का वेग $v$ है। $\eta$ की विमायें हैं
किसी नलिका से बहने वाले द्रव के क्रांतिक वेग $v _{ c }$ की विमाओं को $\left[\eta^{ x } \rho^{ y } r ^{ x }\right]$ से निर्दिप्ट किया जाता है जहाँ $\eta, \rho$ तथा $r$ क्रमश: द्रव का श्यानता गुणांक, द्रव का घनत्व तथा नलिका की त्रिज्या है, तो $x , y$ तथा $z$ क्रमश: मान है