$K$ બળ અચળાંક ધરાવતી સ્પિંગ્ર પર $m$ દળ લટકાવીને દોલનો કરાવતા આવૃત્તિ $ f = C\,{m^x}{K^y} $ સૂત્ર મુજબ આપવામાં આવે છે, જ્યા $C$ એ પરિમાણરહિત રાશિ છે. $x$ અને $y $ ના મૂલ્યો કેટલા હશે? 

  • [AIPMT 1990]
  • A

    $ x = \frac{1}{2},\,y = \frac{1}{2} $

  • B

    $ x = - \frac{1}{2},\,y = - \frac{1}{2} $

  • C

    $ x = \frac{1}{2},\,y = - \frac{1}{2} $

  • D

    $ x = - \frac{1}{2},\,y = \frac{1}{2} $

Similar Questions

તરંગના વેગનું સમીકરણ $ Y = A\sin \omega \left( {\frac{x}{v} - k} \right) $ ,જયાં $ \omega $ કોણીય વેગ અને $v$ રેખીય વેગ હોય,તો $k$ નું પારિમાણીક સૂત્ર શું થશે?

એક વિદ્યાર્થી ભૌતિકવિજ્ઞાનમાં પ્રચલિત એવા કોઈ કણનાં ચલિતદળ $(moving\, mass)$ $m$ અને સ્થિર દળ $(rest \,mass)$ $m_{0}$ તથા કણનો વેગ $v$ અને પ્રકાશની ઝડપ $c$ વચ્ચેનો (આ સંબંધ પ્રથમ આલ્બર્ટ આઇન્સ્ટાઇનના વિશિષ્ટ સાપેક્ષતાના સિદ્ધાંતનાં પરિણામ સ્વરૂપે મળેલ હતો.) સંબંધને લગભગ સાચો યાદ રાખીને લખે છે. પરંતુ અચળાંક $c$ ને ક્યાં મૂકવો તે ભૂલી જાય છે. તે  $m=\frac{m_{0}}{\left(1-v^{2}\right)^{1 / 2}}$ લખે છે. અનુમાન કરો કે $c$ ને ક્યાં મૂકવો જોઈએ ?

પરિમાણની સંકલ્પના પાયાનું મહત્ત્વ ધરાવે છે સમજાવો.

આપેલ સમીકરણ પરિમાણિક દૃષ્ટિએ સાચું છે કે નહિ તે ચકાસો. $\frac{1}{2} m v^{2}=m g h$ જ્યાં $m$ પદાર્થનું દળ, $v$ તેનો વેગ, $g$ ગુરુત્વપ્રવેગ અને $h$ ઊંચાઈ છે. 

$\frac{d y}{d x}=z w \sin \left(w t+\phi_0\right)$ માં $\left(w t+\phi_0\right)$ માટે પરિમાણ સૂત્ર