Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
$0$
$6$
$4$
None of these
${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
$\root 4 \of {(17 + 12\sqrt 2 )} = $
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $
If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$