If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
$5$
$\sqrt 5 $
$1/5$
$1/\sqrt 5 $
If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$
If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is
$\root 4 \of {(17 + 12\sqrt 2 )} = $
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are