- Home
- Standard 11
- Mathematics
Basic of Logarithms
hard
If $x = 3 - \sqrt {5,} $ then ${{\sqrt x } \over {\sqrt 2 + \sqrt {(3x - 2)} }} = $
A
$5$
B
$\sqrt 5 $
C
$1/5$
D
$1/\sqrt 5 $
Solution
(d) $x = 3 – \sqrt 5 $
$\sqrt x = \sqrt {3 – \sqrt 5 } = {1 \over {\sqrt 2 }}\,.\sqrt {6 – 2\sqrt 5 } = {1 \over {\sqrt 2 }}(\sqrt 5 – 1)$ $3x – 2 = 9 – 3\sqrt 5 – 2 = 7 – 3\sqrt 5 = {{14 – 6\sqrt 5 } \over 2}$
= ${{{{(3 – \sqrt 5 )}^2}} \over 2}$;
$ \Rightarrow $ $\sqrt 2 + \sqrt {3x – 2} = \sqrt 5 \,.\,\sqrt x $;
$\therefore {{\sqrt x } \over {\sqrt 2 + \sqrt {3x – 2} }} = {1 \over {\sqrt 5 }}$.
Standard 11
Mathematics