સરવાળો $\sum \limits_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}= ..............$
$\frac{11 e }{2}+\frac{7}{2 e }$
$\frac{13 e }{4}+\frac{5}{4 e }-4$
$\frac{11 e }{2}+\frac{7}{2 e }-4$
$\frac{13 e }{4}+\frac{5}{4 e }$
જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો
જો $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ તો
$\log ab - \log |b| = $
${\log _{0.2}}{{x + 2} \over x} \le 1$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
જો ${a^x} = b,{b^y} = c,{c^z} = a,$ તો $xyz = . . . .$