જો ${\log _4}5 = a$ અને ${\log _5}6 = b $ તો ${\log _3}2= . . . .$
${1 \over {2a + 1}}$
${1 \over {2b + 1}}$
$2ab + 1$
${1 \over {2ab - 1}}$
${\log _4}18 = . . . .$
$log_{(4-x)}(x^2 -14x + 45)$ ના વ્યાખિયાતિત થવા માટેની બધી પ્રાકૃતિક સંખ્યાઓનો સરવાળો મેળવો.
$\sum\limits_{n = 1}^n {{1 \over {{{\log }_{{2^n}}}(a)}}} = $
સમીકરણ $\left| {1 - {{\log }_{\frac{1}{6}}}x} \right| + \left| {{{\log }_2}x} \right| + 2 = \left| {3 - {{\log }_{\frac{1}{6}}}x + {{\log }_{\frac{1}{2}}}x} \right|$ નો ઉકેલગણ $\left[ {\frac{a}{b},a} \right],a,b, \in N,$ હોય તો $(a + b)$ ની કિમત મેળવો.
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $