योगफल $\sum_{n=1}^{\infty} \frac{2 n^2+3 n+4}{(2 n) !}$ बराबर है:
$\frac{11 e }{2}+\frac{7}{2 e }$
$\frac{13 e }{4}+\frac{5}{4 e }-4$
$\frac{11 e }{2}+\frac{7}{2 e }-4$
$\frac{13 e }{4}+\frac{5}{4 e }$
$y = {\log _a}x$ को परिभाषित करने के लिए $ ‘a’$ होगा
यदि ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ हो, तब $x$ किस अन्तराल में है
यदि $1$ से भिन्न तीन विभिन्न धनात्मक संख्यायें $a, b, c $ इस प्रकार हो कि $[{\log _b}a{\log _c}a - {\log _a}a] + [{\log _a}b{\log _c}b - {\log _b}b]$$ + [{\log _a}c{\log _b}c - {\log _c}c] = 0,$ तब $abc =$
$\left(\left(\log _2 9\right)^2\right)^{\frac{1}{\log _2\left(\log _2 9\right.}} \times(\sqrt{7})^{\frac{1}{\log _4 7}}$ का मान है ..................|
यदि ${\log _k}x.\,{\log _5}k = {\log _x}5,k \ne 1,k > 0$ हो, तब $x$ का मान होगा