दो समांतर श्रेढ़ियों के $n$ पदों के योगफल का अनुपात $(3 n+8):(7 n+15)$ है। $12$ वें पद का अनुपात ज्ञात कीजिए।
Let $a_{1}, a_{2}$ and $d_{1}, d_{2}$ be the first terms and common difference of the first and second arithmetic progression, respectively. According to the given condition, we have
$\frac{{{\rm{ Sum}}\,\,{\rm{to}}\,\,{\rm{nterms}}\,\,{\rm{of}}\,\,{\rm{ first }}\,{\rm{A}}{\rm{.P}}{\rm{. }}}}{{{\rm{ Sumt}}\,\,\,{\rm{on}}\,\,{\rm{ terms }}\,\,{\rm{of }}\,\,{\rm{second }}\,\,{\rm{A}}{\rm{.P}}{\rm{. }}}} = \frac{{3n + 8}}{{7n + 15}}$
or $\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{3 n+8}{7 n+15}$
or $\frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{3 n+8}{7 n+15}$ .........$(1)$
Now $\frac{{{{12}^{{\rm{th }}}}{\rm{ term}}\,\,{\rm{of }}\,\,{\rm{first \,A}}{\rm{.P}}{\rm{. }}}}{{{{12}^{{\rm{th }}}}{\rm{ term}}\,\,{\rm{of }}\,\,{\rm{second \,A}}{\rm{.P }}}} = \frac{{{a_1} + 11{d_1}}}{{{a_2} + 11{d_2}}}$
$\frac{2 a_{1}+22 d_{1}}{2 a_{2}+22 d_{2}}=\frac{3 \times 23+8}{7 \times 23+15}$ [ By putting $n=23$ in $(1)$ ]
Therefore $\frac{a_{1}+11 d_{1}}{a_{2}+11 d_{2}}=\frac{12^{\text {th }} \text { term of first A.P. }}{12^{\text {th }} \text { term of second A.P. }}=\frac{7}{16}$
Hence, the required ratio is $7: 16$
यदि ${a_1},\,{a_2},....,{a_{n + 1}}$ समांतर श्रेणी में हों, तो $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ का मान होगा
यदि $a _{1}, a _{2}, a _{3}, \ldots \ldots \ldots, a _{ n }$ एक समान्तर श्रेढ़ी में है तथा $a_{1}+a_{4}+a_{7}+\ldots \ldots . .+a_{16}=114$, है, तो $a_{1}+a_{6}+a_{11}+a_{16}$ बराबर है
श्रेणियों $3+7+11+15+\ldots$ तथा $1+6+11+16+\ldots \ldots$, के बीच उभयनिष्ठ प्रथम $20$ पदों का योग है
माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है
किसी सड़क के एक ओर के घरों को लगातारं सम संख्याओं से अंकित किया गया है। इन सभी समसंख्याओं का योग $170$ है। यदि कम से कम $6$ घर हों और छठे घर का अंक $a$ हो तो :