दो समांतर श्रेढ़ियों के $n$ पदों के योगफल का अनुपात $(3 n+8):(7 n+15)$ है। $12$ वें पद का अनुपात ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $a_{1}, a_{2}$ and $d_{1}, d_{2}$ be the first terms and common difference of the first and second arithmetic progression, respectively. According to the given condition, we have

$\frac{{{\rm{ Sum}}\,\,{\rm{to}}\,\,{\rm{nterms}}\,\,{\rm{of}}\,\,{\rm{ first }}\,{\rm{A}}{\rm{.P}}{\rm{. }}}}{{{\rm{ Sumt}}\,\,\,{\rm{on}}\,\,{\rm{ terms }}\,\,{\rm{of }}\,\,{\rm{second }}\,\,{\rm{A}}{\rm{.P}}{\rm{. }}}} = \frac{{3n + 8}}{{7n + 15}}$

or    $\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{2}+(n-1) d_{2}\right]}=\frac{3 n+8}{7 n+15}$

or    $\frac{2 a_{1}+(n-1) d_{1}}{2 a_{2}+(n-1) d_{2}}=\frac{3 n+8}{7 n+15}$       .........$(1)$

Now    $\frac{{{{12}^{{\rm{th }}}}{\rm{ term}}\,\,{\rm{of }}\,\,{\rm{first \,A}}{\rm{.P}}{\rm{. }}}}{{{{12}^{{\rm{th }}}}{\rm{ term}}\,\,{\rm{of }}\,\,{\rm{second \,A}}{\rm{.P }}}} = \frac{{{a_1} + 11{d_1}}}{{{a_2} + 11{d_2}}}$

$\frac{2 a_{1}+22 d_{1}}{2 a_{2}+22 d_{2}}=\frac{3 \times 23+8}{7 \times 23+15}$         [ By putting $n=23$ in $(1)$ ]

Therefore   $\frac{a_{1}+11 d_{1}}{a_{2}+11 d_{2}}=\frac{12^{\text {th }} \text { term of first A.P. }}{12^{\text {th }} \text { term of second A.P. }}=\frac{7}{16}$

Hence, the required ratio is $7: 16$

Similar Questions

ऐसी $6$ संख्याएँ ज्ञात कीजिए जिनको $3$ और $24$ के बीच रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी बन जाए।

यदि $x,y,z$ समान्तर श्रेणी में हों तथा ${\tan ^{ - 1}}x,{\tan ^{ - 1}}y$, ${\tan ^{ - 1}}z$ भी समान्तर श्रेणी में हों, तब

यदि $n$ प्राकृत संख्या है और श्रेणी $n+2 n+3 n+\cdots+99 n$ का मान एक पूर्ण वर्ग है, तो ऐसे लघुत्तम $n$ के वर्ग, अर्थात $n^2$ में अंको की संख्या होगी :

  • [KVPY 2015]

यदि श्रेणी $54 + 51 + 48 + .............$ का योग $513$ हो, तो पदों की संख्या है

समांतर श्रेणी $-6,-\frac{11}{2},-5, \ldots$ के कितने पदों का योगफल $-25$ है ?