- Home
- Standard 11
- Mathematics
${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ..... + {\log _{\sqrt[{16}]{3}}}x = 36$ का हल है
$x = 3$
$x = 4\sqrt 3 $
$x = 9$
$x = \sqrt 3 $
Solution
(d) ${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + …… + {\log _{\sqrt[{16}]{3}}}x = 36$
$ \Rightarrow $$\frac{1}{{{{\log }_x}\sqrt 3 \,}} + \frac{1}{{{{\log }_x}\sqrt[4]{3}}} + \frac{1}{{{{\log }_x}\sqrt[6]{3}}} + … + \frac{1}{{{{\log }_x}\sqrt[{16}]{3}}} = 36$
$ \Rightarrow $ $\frac{1}{{(1/2){{\log }_x}3}} + \frac{1}{{(1/4){{\log }_x}3}} + \frac{1}{{(1/6){{\log }_x}3}} + ….. + \frac{1}{{(1/16){{\log }_x}3}} = 36$
$ \Rightarrow $ $({\log _3}x)(2 + 4 + 6 + ….. + 16) = 36$
$ \Rightarrow $ $({\log _3}x)\frac{8}{2}[2 + 16] = 36$
$ \Rightarrow $${\log _3}x = \frac{1}{2}$
$ \Rightarrow $$x = {3^{1/2}}$
$ \Rightarrow x = \sqrt 3 $.