${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ..... + {\log _{\sqrt[{16}]{3}}}x = 36$ का हल है
$x = 3$
$x = 4\sqrt 3 $
$x = 9$
$x = \sqrt 3 $
माना $a , b$ दो शून्येत्तर वास्तविक संख्याएँ हैं। एक समीकरण $x^2-8 a x+2 a=0$ के मूल $p$ तथा $r$ हैं और समीकरण $x ^2+12 bx +6 b =0$, के मूल $q$ तथा $s$ हैं, इस प्रकार कि $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ A.P. में हैं,तो $a^{-1}-b^{-1}$ बराबर है $................$
$100$ तथा $1000$ के मध्य उन सभी प्राकृत संख्याओं का योगफल ज्ञात कीजिए जो $5$ के गुणज हों।
श्रेणी $\sqrt 2 + \sqrt 8 + \sqrt {18} + \sqrt {32} + .........$ के $24$ पदों का योगफल है
यदि तीन भिन्न संख्याएं $a, b, c$ गुणोत्तर श्रेढ़ी में है तथा समीकरण $ax ^{2}+2 bx + c =0$ और $dx ^{2}+2 ex +$ $f=0$ का एक उभयनिष्ठ मूल है, तो निम्न में से कौन-सा एक कथन सत्य है ?
भिन्न $A.P.$ बनाई गई हैं, जिनके प्रथम पद $100$ , अंतिम पद $199$ तथा सार्व अंतर पुर्णांक हैं। इस प्रकार की सभी $A.P.$, जिनमें कम से कम $3$ पद तथा अधिक से अधिक $33$ पद हैं, के सार्व अंतरों का योगफल है