यदि ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ और $a,\;b,\;c$ गुणोत्तर श्रेणी में हैं, तो $x, y$और $z$ होंगे
समान्तर श्रेणी में
गुणोत्तर श्रेणी में
हरात्मक श्रेणी
इनमें से कोई नहीं
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=n(n+2)$
यदि ${S_k}$ किसी समान्तर श्रेणी के $k$ पदों का योगफल है जिसके प्रथम पद एवं सार्वअन्तर क्रमश: $‘a’$ व $‘d’$ हैं, तो $\frac{{{S_{kn}}}}{{{S_n}}}$,$n$ से स्वतंत्र होगा यदि
किसी समान्तर श्रेणी का $n$ वाँ पद $(2n - 1)$ है, तो उस श्रेणी के $n$ पदों का योग होगा
माना कि अनुक्रम $a_{n}$ निम्नलिखित रूप में परिभाषित है
${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$
तो अनुक्रम के पाँच पद ज्ञात कीजिए तथा संगत श्रेणी लिखिए।
यदि ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, तब ${a_5}$ है