यदि ${a^{1/x}} = {b^{1/y}} = {c^{1/z}}$ और $a,\;b,\;c$ गुणोत्तर श्रेणी में हैं, तो $x, y$और $z$ होंगे
समान्तर श्रेणी में
गुणोत्तर श्रेणी में
हरात्मक श्रेणी
इनमें से कोई नहीं
समांतर श्रेणी $3,7,11,15...$ के कितने पदों का योग $406$ होगा
एक बहुभुज के दो क्रमिक अंतःकोणों का अंतर $5^{0}$ है। यदि सबसे छोटा कोण $120^{\circ}$ हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
यदि श्रेणियों $63 + 65 + 67 + 69 + .........$ तथा $3 + 10 + 17 + 24 + ......$ के $m$ वें पद बराबर हों, तो $m = $
माना $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_{100}$ एक समांतर श्रेणी में हैं, जिनका माध्य 200 है तथा $x_1=2$ है। यदि $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ हैं, तो $\mathrm{y}_1, \mathrm{y}_2, \ldots \ldots, \mathrm{y}_{100}$ का माध्य है
यदि $x^{2}-3 x+p=0$ के मूल $a$ तथा $b$ हैं तथा $x^{2}-12 x+q=0,$ के मूल $c$ तथा $d$ हैं, जहाँ $a, b, c, d$ गुणोत्तर श्रेणी के रूप में हैं। सिद्ध कीजिए कि $(q+p):(q-p)=17: 15$