The sum of all real values of $x$ satisfying the equation ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ is ;
$6$
$5$
$3$
$-4$
Consider the equation ${x^2} + \alpha x + \beta = 0$ having roots $\alpha ,\beta $ such that $\alpha \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then
If $S$ is a set of $P(x)$ is polynomial of degree $ \le 2$ such that $P(0) = 0,$$P(1) = 1$,$P'(x) > 0{\rm{ }}\forall x \in (0,\,1)$, then
The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is
The maximum possible number of real roots of equation ${x^5} - 6{x^2} - 4x + 5 = 0$ is
Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,