4-2.Quadratic Equations and Inequations
medium

The number of real roots of the equation $\mathrm{e}^{4 \mathrm{x}}-\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1=0$ is equal to $.....$

A

$7$

B

$2$

C

$3$

D

$4$

(JEE MAIN-2021)

Solution

$t^{4}-t^{3}-4 t^{2}-t+1=0, e^{x}=t>0$

$\Rightarrow t^{2}-t-4-\frac{1}{t}+\frac{1}{t^{2}}=0$

$\Rightarrow \alpha^{2}-\alpha-6=0, \alpha=t+\frac{1}{t} \geq 2$

$\Rightarrow \alpha=3,-2(\text { reject })$

$\Rightarrow t+\frac{1}{t}=3$

$\Rightarrow$ The number of real roots $=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.