The number of real roots of the equation $\mathrm{e}^{4 \mathrm{x}}-\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1=0$ is equal to $.....$

  • [JEE MAIN 2021]
  • A

    $7$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

Let $r$ be a real number and $n \in N$ be such that the polynomial $2 x^2+2 x+1$ divides the polynomial $(x+1)^n-r$. Then, $(n, r)$ can be

  • [KVPY 2010]

Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$. Then $\mathrm{m}+\mathrm{n}$ is equal to :

  • [JEE MAIN 2024]

Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1}  + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is

Two distinct polynomials $f(x)$ and $g(x)$ are defined as follows:

$f(x)=x^2+a x+2 ; g(x)=x^2+2 x+a$.If the equations $f(x)=0$ and $g(x)=0$ have a common root, then the sum of the roots of the equation $f(x)+g(x)=0$ is

  • [KVPY 2015]

If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then