The sum of all the solutions of the equation $(8)^{2 x}-16 \cdot(8)^x+48=0$ is :
$1+\log _6(8)$
$\log _8(6)$
$1+\log _8(6)$
$\log _8(4)$
If$\frac{{2x}}{{2{x^2} + 5x + 2}} > \frac{1}{{x + 1}}$, then
The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$ is
The sum of all real values of $x$ satisfying the equation ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ is ;
If $3$ distinct real number $a$,$b$,$c$ satisfy $a^2(a + p) = b^2 (b + p) = c^2 (c + p)$ where $p \in R$, then value of $bc + ca + ab$ is
$\{ x \in R:|x - 2|\,\, = {x^2}\} = $