The sum of all the solutions of the equation $(8)^{2 x}-16 \cdot(8)^x+48=0$ is :
$1+\log _6(8)$
$\log _8(6)$
$1+\log _8(6)$
$\log _8(4)$
If $3$ distinct real number $a$,$b$,$c$ satisfy $a^2(a + p) = b^2 (b + p) = c^2 (c + p)$ where $p \in R$, then value of $bc + ca + ab$ is
If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then
If ${x^2} + 2ax + 10 - 3a > 0$ for all $x \in R$, then
Let $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$ be the solution of the equation $4 x^4+8 x^3-17 x^2-12 x+9=0$ and $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. Then the value of $\mathrm{m}$ is..........
The number of ordered pairs $(x, y)$ of real numbers that satisfy the simultaneous equations $x+y^2=x^2+y=12$ is