The roots of the equation $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$, If one of them is $3 + i\sqrt 6 $, are
$3 - i\sqrt 6 , \pm \sqrt {\frac{3}{2}} $
$3 - i\sqrt 6 , \pm \frac{3}{{\sqrt 2 }}$
$3 - i\sqrt 6 , \pm \frac{{\sqrt 3 }}{2}$
None of these
If $\alpha ,\beta,\gamma$ are the roots of equation $x^3 + 2x -5 = 0$ and if equation $x^3 + bx^2 + cx + d = 0$ has roots $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ , then value of $|b + c + d|$ is (where $b,c,d$ are coprime)-
Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,
The sum of integral values of $a$ such that the equation $||x\ -2|\ -|3\ -x||\ =\ 2\ -a$ has a solution
The roots of the equation ${x^4} - 2{x^3} + x = 380$ are
Solution of the equation $\sqrt {x + 3 - 4\sqrt {x - 1} } + \sqrt {x + 8 - 6\sqrt {x - 1} } = 1$ is