The roots of the equation $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$, If one of them is $3 + i\sqrt 6 $, are

  • A

    $3 - i\sqrt 6 , \pm \sqrt {\frac{3}{2}} $

  • B

    $3 - i\sqrt 6 , \pm \frac{3}{{\sqrt 2 }}$

  • C

    $3 - i\sqrt 6 , \pm \frac{{\sqrt 3 }}{2}$

  • D

    None of these

Similar Questions

Let $t$ be real number such that $t^2=a t+b$ for some positive integers $a$ and $b$. Then, for any choice of positive integers $a$ and $b, t^3$ is never equal to

  • [KVPY 2016]

If the roots of the equation $8{x^3} - 14{x^2} + 7x - 1 = 0$ are in $G.P.$, then the roots are

If $x$ be real, then the minimum value of ${x^2} - 8x + 17$ is

If $a,b,c$ are real and ${x^3} - 3{b^2}x + 2{c^3}$ is divisible by $x - a$ and$x - b$, then

The solution set of the equation $pq{x^2} - {(p + q)^2}x + {(p + q)^2} = 0$ is