The sum of all values of $\theta \, \in \,\left( {0,\frac{\pi }{2}} \right)$ satisfying ${\sin ^2}\,2\theta  + {\cos ^4}\,2\theta  = \frac{3}{4}$ is

  • [JEE MAIN 2019]
  • A

    $\pi $

  • B

    $\frac{{5\pi }}{4}$

  • C

    $\frac{{\pi }}{2}$

  • D

    $\frac{{3\pi }}{8}$

Similar Questions

$2\cos x - \cos 3x - \cos 5x = $

If $\tan \beta = \cos \theta \tan \alpha ,$ then ${\tan ^2}\frac{\theta }{2} = $

If $\cos \,(\theta - \alpha ) = a,\,\,\sin \,(\theta - \beta ) = b,\,\,$then ${\cos ^2}(\alpha - \beta ) + 2ab\,\sin \,(\alpha - \beta )$ is equal to

Prove that $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

If $x = \cos 10^\circ \cos 20^\circ \cos 40^\circ ,$ then the value of $x$ is