If $\frac{{5\pi }}{2} < x < 3\pi $, then the value of the expression $\frac{{\sqrt {1 - \sin x}  + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x}  - \sqrt {1 + \sin x} }}$ is

  • A

    $-cot \frac{x}{2}$

  • B

    $cot \frac{x}{2}$

  • C

    $ tan \frac{x}{2}$

  • D

    $-tan \frac{x}{2}$

Similar Questions

If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to

If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be

If $\tan \frac{\theta }{2} = t,$then $\frac{{1 - {t^2}}}{{1 + {t^2}}}$is equal to

If $\sin A = n\sin B,$ then $\frac{{n - 1}}{{n + 1}}\tan \,\frac{{A + B}}{2} = $

If $\tan A = \frac{1}{2},$ then $\tan 3A = $