In any triangle $ABC ,$ ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2}$ is equal to

  • A

    $1 - 2\,\cos \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$

  • B

    $1 - 2\,\sin \frac{A}{2}\cos \frac{B}{2}\cos \frac{C}{2}$

  • C

    $1 - 2\,\sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}$

  • D

    $1 - 2\,\cos \frac{A}{2}\cos \frac{B}{2}\sin \frac{C}{2}$

Similar Questions

If $A + B + C = {270^o},$ then $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $

$\tan 75^\circ - \cot 75^\circ = $

The expression $\frac{{{{\tan }^2}20^\circ  - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to

If $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ and $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,where $0 \le \alpha ,\beta \le \frac{\pi }{4}$ . Then $\tan 2\alpha =$ 

  • [IIT 1979]

$\frac{{\sqrt 2 - \sin \alpha - \cos \alpha }}{{\sin \alpha - \cos \alpha }} = $