The sum of first $n$ natural numbers is

  • A

    $n\,(n - 1)$

  • B

    $\frac{{n\,(n - 1)}}{2}$

  • C

    $n\,(n + 1)$

  • D

    $\frac{{n\,(n + 1)}}{2}$

Similar Questions

If ${a_1},\,{a_2},....,{a_{n + 1}}$ are in $A.P.$, then $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ is

If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in

If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to

Three numbers are in $A.P.$ whose sum is $33$ and product is $792$, then the smallest number from these numbers is

Show that the sum of $(m+n)^{ th }$ and $(m-n)^{ th }$ terms of an $A.P.$ is equal to twice the $m^{\text {th }}$ term.