प्रथम $n$ प्राकृत संख्याओं का योग होता है
$n\,(n - 1)$
$\frac{{n\,(n - 1)}}{2}$
$n\,(n + 1)$
$\frac{{n\,(n + 1)}}{2}$
यदि $\frac{1}{{p + q}},\;\frac{1}{{r + p}},\;\frac{1}{{q + r}}$ समान्तर श्रेणी में हैं, तो
श्रेणी $( - 8 + 18i),\,( - 6 + 15i),$ $( - 4 + 12i)$ $,......$ का कौन सा पद शुद्ध अधिकल्पित संख्या है
माना $3,7,11,15, \ldots, 403$ तथा $2,5,8,11, \ldots$ $404$ दो समान्तर श्रेढ़ियाँ है तो इनमें उभयनिष्ठ पदों का योग है .............
यदि A.P. $a _{1} a _{2}, a _{3}, \ldots$ के प्रथम 11 पदों का योगफल $0\left(a_{1} \neq 0\right)$ है और A.P., $a_{1}, a_{3}, a_{5}, \ldots, a_{23}$ का योगफल $ka _{1}$ है, तो $k$ बराबर है -
$1$ से $100$ तक आने वाले उन सभी पूर्णांकों का योगफल ज्ञात कीजिए जो $2$ या $5$ से विभाजित हों।