समीकरण $\frac{\cos x }{1+\sin x }=|\tan 2 x |$, $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ के हलो का योग है
$-\frac{11 \pi}{30}$
$\frac{\pi}{10}$
$-\frac{7 \pi}{30}$
$-\frac{\pi}{15}$
समीकरणों $\sin \theta = \sin \alpha $ तथा $\cos \theta = \cos \alpha $ को संतुष्ट करने वाला $\theta $ का सर्वव्यापक मान है
समीकरण $\tan \theta + \sec \theta = \sqrt 3 ,$ जहाँ $0 < \theta < 2\pi $ के हलों की संख्या है
यदि $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, तब $B =$
$x \in[0,2 \pi]$ की संख्या, जिनके लिए $\left|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\right|$ $=1$ है
यदि $\sin (A + B) =1$ तथा $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ तो $A$ तथा $B$ के न्यूनतम धनात्मक मान हैं