$\left(x+\sqrt{x^{3}-1}\right)^{5}+\left(x-\sqrt{x^{3}-1}\right)^{5},(x>1)$ के प्रसार में सभी विषम घातों वाले पदों के गुणांकों का योग है
$0$
$1$
$2$
$-1$
माना $C _{ r },(1+ x )^{10}$ के प्रसार में $x ^{ r }$ के द्विपद गुणांक को प्रदर्शित करता है। यदि $\alpha, \beta \in R$ के लिए
$C _1+3.2 C _2+5 \cdot 3 C _3+\ldots 10$ पद तक
$=\frac{\alpha \times 2^{11}}{2^\beta-1}( C _0+\frac{ C _1}{2}+\frac{ C _2}{3}+\ldots . .10$ पद तक है,तो $\alpha+\beta$ का मान होगा
' $x$ ' का एक संभव मान, जिसके लिए व्यंजक $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ के $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ की बढ़ती घातों में प्रसार में नौवॉँ पद $180$ के बराबर है
${(1 + x + {x^2})^n}$ के विस्तार में गुणांकों का योग होगा
$\left(1-x-x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{7}$ का गुणांक है:
यदि $n, 1$ से बड़ा पूर्णांक है, तब $a{ - ^n}{C_1}(a - 1){ + ^n}{C_2}(a - 2) + .... + {( - 1)^n}(a - n) = $