7.Binomial Theorem
hard

यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............ 

A

$2041$

B

$2024$

C

$2014$

D

$2043$

(JEE MAIN-2024)

Solution

$ \sum_{\mathrm{r}=1}^9 \frac{{ }^{11} \mathrm{C}_{\mathrm{r}}}{\mathrm{r}+1} $

$ =\frac{1}{12} \sum_{\mathrm{r}=1}^9{ }^{12} \mathrm{C}_{\mathrm{r}+1}$

$ =\frac{1}{12}\left[2^{12}-26\right]=\frac{2035}{6} $

$\therefore \mathrm{m}+\mathrm{n}=2041$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.