The sum of the first and third term of an arithmetic progression is $12$ and the product of first and second term is $24$, then first term is
$1$
$8$
$4$
$6$
If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to
Three number are in $A.P.$ such that their sum is $18$ and sum of their squares is $158$. The greatest number among them is
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
If $\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$ are in an $A.P.$ and $\log _e \mathrm{a}-$ $\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ are also in an $A.P,$ then $a: b: c$ is equal to
The number of terms of the $A.P. 3,7,11,15...$ to be taken so that the sum is $406$ is