If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c, d$ are roots of $x^{2}-12 x+q=0$ where $a, b, c, d$ form a $G.P.$ Prove that $(q+p):(q-p)=17: 15$
It is given that $a$ and $b$ are the roots of $x^{2}-3 x+p=0$
$\therefore a+b=3$ and $a b=p$ .......$(1)$
Also, $c$ and $d$ are the roots of $x^{2}-12 x+q=0$
$\therefore c+d=12$ and $c d=q$ .........$(2)$
It is given that $a, b, c, d$ are in $G.P.$
Let $a=x, b=x r, c=x r^{2}, d=x r^{3}$
From $(1)$ and $(2)$
We obtain $x+x y=3 \Rightarrow x(1+r)=3$
$x r^{2}+x^{3}=12$
$\Rightarrow x r^{2}(1+r)=12$
On dividing, we obtain
$\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\pm 2$
When $r=2, x=\frac{3}{1+2}=\frac{3}{3}=1$
When $r=-2, x=\frac{3}{1-2}=\frac{3}{-1}=-3$
Case $I:$ When $r=2$ and $x=1, \quad a b=x^{2} r=2, \quad c d=x^{2} r^{5}=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Case $II:$
When $r=-2, x=-3, a b=x^{2} r=-18, c d=x^{2} r^{5}=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Thus, in both the cases, we obtain $(q+p):(q-p)=17: 15$
If $A$ be an arithmetic mean between two numbers and $S$ be the sum of $n$ arithmetic means between the same numbers, then
If the ${n^{th}}$ term of an $A.P.$ be $(2n - 1)$, then the sum of its first $n$ terms will be
If $\tan \,n\theta = \tan m\theta $, then the different values of $\theta $ will be in
If the sum of $\mathrm{n}$ terms of an $\mathrm{A.P.}$ is $n P+\frac{1}{2} n(n-1) Q,$ where $\mathrm{P}$ and $\mathrm{Q}$ are constants, find the common difference.
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=n \frac{n^{2}+5}{4}$