If $a$ and $b$ are the roots of $x^{2}-3 x+p=0$ and $c, d$ are roots of $x^{2}-12 x+q=0$ where $a, b, c, d$ form a $G.P.$ Prove that $(q+p):(q-p)=17: 15$
It is given that $a$ and $b$ are the roots of $x^{2}-3 x+p=0$
$\therefore a+b=3$ and $a b=p$ .......$(1)$
Also, $c$ and $d$ are the roots of $x^{2}-12 x+q=0$
$\therefore c+d=12$ and $c d=q$ .........$(2)$
It is given that $a, b, c, d$ are in $G.P.$
Let $a=x, b=x r, c=x r^{2}, d=x r^{3}$
From $(1)$ and $(2)$
We obtain $x+x y=3 \Rightarrow x(1+r)=3$
$x r^{2}+x^{3}=12$
$\Rightarrow x r^{2}(1+r)=12$
On dividing, we obtain
$\frac{x r^{2}(1+r)}{x(1+r)}=\frac{12}{3}$
$\Rightarrow r^{2}=4$
$\Rightarrow r=\pm 2$
When $r=2, x=\frac{3}{1+2}=\frac{3}{3}=1$
When $r=-2, x=\frac{3}{1-2}=\frac{3}{-1}=-3$
Case $I:$ When $r=2$ and $x=1, \quad a b=x^{2} r=2, \quad c d=x^{2} r^{5}=32$
$\therefore \frac{q+p}{q-p}=\frac{32+2}{32-2}=\frac{34}{30}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Case $II:$
When $r=-2, x=-3, a b=x^{2} r=-18, c d=x^{2} r^{5}=-288$
$\therefore \frac{q+p}{q-p}=\frac{-288-18}{-288+18}=\frac{-306}{-270}=\frac{17}{15}$
i.e., $(q+p):(q-p)=17: 15$
Thus, in both the cases, we obtain $(q+p):(q-p)=17: 15$
The sums of $n$ terms of two arithmetic progressions are in the ratio $5 n+4: 9 n+6 .$ Find the ratio of their $18^{\text {th }}$ terms.
Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,
. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . .
If $a\left(\frac{1}{b}+\frac{1}{c}\right), b\left(\frac{1}{c}+\frac{1}{a}\right), c\left(\frac{1}{a}+\frac{1}{b}\right)$ are in $A.P.,$ prove that $a, b, c$ are in $A.P.$
Let $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ be a set of integers with $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. Let the set $A + A =\{ x + y : x , y \in A \} \quad$ contain exactly $39$ elements. Then, the value of $a_{1}+a_{2}+\ldots \ldots+a_{18}$ is equal to...........
What is the sum of all two digit numbers which give a remainder of $4$ when divided by $6$ ?