किसी समान्तर श्रेणी के प्रथम तथा तृतीय पदों का योग $12$ है, तथा प्रथम व द्वितीय पदों का गुणनफल $24$ है, तब श्रेणी का प्रथम पद होगा
$1$
$8$
$4$
$6$
समीकरण $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ के लिए $x$ का मान है
$\sum\limits_{r = 1}^n {\log \left( {\frac{{{a^r}}}{{{b^{r - 1}}}}} \right)} $ का मान है
उन सभी दो अंकों की संख्याओं का योगफल, जिन्हें $4$ से विभाजित करने पर शेषफल $1$ मिलता हो,
एक समान्तर श्रेणी के $m$ व $n$ पदों के योगों का अनुपात ${m^2}:{n^2}$ है, तो $m$ वें व $n$ वें पदों का अनुपात होगा
यदि ${S_n}$ समान्तर श्रेणी के $n$ पदों का योगफल दर्शाता हो, तो $({S_{2n}} - {S_n})$ का मान है