किसी समान्तर श्रेणी के प्रथम तथा तृतीय पदों का योग $12$ है, तथा प्रथम व द्वितीय पदों का गुणनफल $24$ है, तब श्रेणी का प्रथम पद होगा
$1$
$8$
$4$
$6$
यदि $\frac{{3 + 5 + 7 + ......{\text{upto}}\;n\;{\text{terms}}}}{{5 + 8 + 11 + ....{\text{upto}}\;10\;{\text{terms}}}} = 7$, तो $n$ का मान है
यदि $1,\;{\log _y}x,\;{\log _z}y,\; - 15{\log _x}z$ समान्तर श्रेणी में हों, तब
माना एक समान्तर श्रेणी के प्रथम $\mathrm{n}$ पदों का योग $\mathrm{S}_{\mathrm{n}}$ है। यदि $\mathrm{S}_{10}=390$ तथा दसवें और पाँचवें पदों का अनुपात $15: 7$ है। तो $\mathrm{S}_{15}-\mathrm{S}_5$ बराबर है :
यदि $a,b,c$ समान्तर श्रेणी में हों तो $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ होंगे
किसी समांतर श्रेणी का $p$ वाँ, $q$ वाँ $r$ वाँ पद क्रमशः $a, b, c$ हैं, तो सिद्ध कीजिए
$(q-r) a+(r-p) b+(p-q) c=0$