The sum of the roots of the equation, ${x^2}\, + \,\left| {2x - 3} \right|\, - \,4\, = \,0,$ is
$2$
$-2$
$\sqrt 2$
$-\sqrt 2$
The value of $x$ in the given equation ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}$is
If $a+b+c=1, a b+b c+c a=2$ and $a b c=3$, then the value of $a^{4}+b^{4}+c^{4}$ is equal to $....$
Consider the quadratic equation $n x^2+7 \sqrt{n x+n}=0$ where $n$ is a positive integer. Which of the following statements are necessarily correct?
$I$. For any $n$, the roots are distinct.
$II$. There are infinitely many values of $n$ for which both roots are real.
$III$. The product of the roots is necessarily an integer.
The number of distinct real roots of the equation $|\mathrm{x}||\mathrm{x}+2|-5|\mathrm{x}+1|-1=0$ is....................
If $a,b,c$ are distinct real numbers and $a^3 + b^3 + c^3 = 3abc$ , then the equation $ax^2 + bx + c = 0$ has two roots, out of which one root is