If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:

  • [JEE MAIN 2021]
  • A

    $56 \times 3^{25}$

  • B

    $52 \times 3^{24}$

  • C

    $56 \times 3^{24}$

  • D

    $28 \times 3^{25}$

Similar Questions

One root of the following given equation $2{x^5} - 14{x^4} + 31{x^3} - 64{x^2} + 19x + 130 = 0$ is

The number of roots of the equation $|x{|^2} - 7|x| + 12 = 0$ is

Let $x, y, z$ be positive reals. Which of the following implies $x=y=z$ ?

$I.$ $x^3+y^3+z^3=3 x y z$

$II.$ $x^3+y^2 z+y z^2=3 x y z$

$III.$ $x^3+y^2 z+z^2 x=3 x y z$

$IV.$ $(x+y+z)^3=27 x y z$

  • [KVPY 2015]

If $a, b, c$ are real numbers such that $a+b+c=0$ and $a^2+b^2+c^2=1$, then $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2$ $+(5 a-8 b+3 c)^2$ is equal to

  • [KVPY 2017]

The sum of the cubes of all the roots of the equation $x^{4}-3 x^{3}-2 x^{2}+3 x+1=10$ is

  • [JEE MAIN 2022]