If $\alpha$ and $\beta$ are the distinct roots of the equation $x^{2}+(3)^{1 / 4} x+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-\right.1) +\beta^{96}\left(\beta^{12}-1\right)$ is equal to:
$56 \times 3^{25}$
$52 \times 3^{24}$
$56 \times 3^{24}$
$28 \times 3^{25}$
Consider the cubic equation $x^3+c x^2+b x+c=0$ where $a, b, c$ are real numbers. Which of the following statements is correct?
The sum of all non-integer roots of the equation $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ is
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
Consider the quadratic equation $n x^2+7 \sqrt{n x+n}=0$ where $n$ is a positive integer. Which of the following statements are necessarily correct?
$I$. For any $n$, the roots are distinct.
$II$. There are infinitely many values of $n$ for which both roots are real.
$III$. The product of the roots is necessarily an integer.
lf $2 + 3i$ is one of the roots of the equation $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ then the real root of this equation