Given that $\overrightarrow A + \overrightarrow B = \overrightarrow C $and that $\overrightarrow C $ is $ \bot $ to $\overrightarrow A $. Further if $|\overrightarrow A |\, = \,|\overrightarrow C |,$then what is the angle between $\overrightarrow A $ and $\overrightarrow B $
$\frac{\pi }{4}radian$
$\frac{\pi }{2}radian$
$\frac{{3\pi }}{4}radian$
$\pi \,\,radian$
The position vector of a particle is determined by the expression $\vec r = 3{t^2}\hat i + 4{t^2}\hat j + 7\hat k$ The distance traversed in first $10 \,sec$ is........ $m$
Following sets of three forces act on a body. Whose resultant cannot be zero
The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
Two forces of magnitude $3\;N$ and $4\;N $ respectively are acting on a body. Calculate the resultant force if the angle between them is $0^o$