- Home
- Standard 11
- Mathematics
The sums of $n$ terms of two arithmatic series are in the ratio $2n + 3:6n + 5$, then the ratio of their ${13^{th}}$ terms is
$53 : 155$
$27 : 77$
$29 : 83$
$31 : 89$
Solution
(a) We have $\frac{{{S_{{n_1}}}}}{{{S_{{n_2}}}}} = \frac{{2n + 3}}{{6n + 5}}$
==> $\frac{{\frac{n}{2}[2{a_1} + (n – 1){d_1}]}}{{\frac{n}{2}[2{a_2} + (n – 1){d_2}]}} = \frac{{2n + 3}}{{6n + 5}}$
==> $\frac{{2\left[ {{a_1} + \left( {\frac{{n – 1}}{2}} \right)\,{d_1}} \right]}}{{2\left[ {{a_2} + \left( {\frac{{n – 1}}{2}} \right)\,{d_2}} \right]}} = \frac{{2n + 3}}{{6n + 5}}$
==> $\frac{{{a_1} + \left( {\frac{{n – 1}}{2}} \right)\,{d_1}}}{{{a_2} + \left( {\frac{{n – 1}}{2}} \right)\,{d_2}}} = \frac{{2n + 3}}{{6n + 5}}$
Put $n = 25$ then $\frac{{{a_1} + 12{d_1}}}{{{a_2} + 12{d_2}}} = \frac{{2(25) + 3}}{{6(25) + 3}}$
==> $\frac{{{T_{{{13}_1}}}}}{{{T_{{{13}_2}}}}} = \frac{{53}}{{155}}$.