दो समान्तर श्रेणियों के $n$ पदों के योग का अनुपात $2n + 3:6n + 5$ है, तो इनके $13$ वें पदों का अनुपात होगा
$53 : 155$
$27 : 77$
$29 : 83$
$31 : 89$
यदि एक समांतर श्रेढ़ी का प्रथम पद $3$ है तथा इसके प्रथम $25$ पदों का योग, इसके अगले $15$ पदों के योग के बराबर है, तो इस समांतर श्रेढ़ी का सार्वअंतर है
माना श्रेणी ${a_1},{a_2},{a_3},.............{a_{2n}}$ एक समान्तर श्रेणी है, तब $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $
अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है
$a_{n}=(-1)^{n-1} 5^{n+1}$
Fibonacci अनुक्रम निम्नलिखित रूप में परिभाषित है
$1=a_{1}=a_{2}$ तथा $a_{n}=a_{n-1}+a_{n-2}, n \cdot>2$ तो
$\frac{a_{n+1}}{a_{n}}$ ज्ञात कीजिए, जबकि $n=1,2,3,4,5$
यदि ${ }^{ n } C _{4},{ }^{ n } C _{5}$ तथा ${ }^{ n } C _{6}$ समान्तर श्रेणी में हो, तो $n$ का मान हो सकता है