If ${m^{th}}$ terms of the series $63 + 65 + 67 + 69 + .........$ and $3 + 10 + 17 + 24 + ......$ be equal, then $m = $
$11$
$12$
$13$
$15$
The sides of a right angled triangle are in arithmetic progression. If the triangle has area $24$ , then what is the length of its smallest side ?
If $\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$ are in an $A.P.$ and $\log _e \mathrm{a}-$ $\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ are also in an $A.P,$ then $a: b: c$ is equal to
Different $A.P.$'s are constructed with the first term $100$,the last term $199$,And integral common differences. The sum of the common differences of all such, $A.P$'s having at least $3$ terms and at most $33$ terms is.
Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=2^{n}$
Let $A =\left\{1, a _{1}, a _{2} \ldots \ldots a _{18}, 77\right\}$ be a set of integers with $1< a _{1}< a _{2}<\ldots \ldots< a _{18}<77$. Let the set $A + A =\{ x + y : x , y \in A \} \quad$ contain exactly $39$ elements. Then, the value of $a_{1}+a_{2}+\ldots \ldots+a_{18}$ is equal to...........