The sum of the integers from $1$ to $100$ which are not divisible by $3$ or $5$ is
$2489$
$4735$
$2317$
$2632$
The four arithmetic means between $3$ and $23$ are
If $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ be consecutive terms of an $A.P.$, then ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ will be in
For $p, q \in R$, consider the real valued function $f ( x )=( x - p )^{2}- q , x \in R$ and $q >0$. Let $a _{1}, a _{2}, a _{3}$ and $a _{4}$ be in an arithmetic progression with mean $P$ and positive common difference. If $\left| f \left( a _{ i }\right)\right|=500$ for all $i=1,2,3,4$, then the absolute difference between the roots of $f ( x )=0$ is.
The number of terms in the series $101 + 99 + 97 + ..... + 47$ is
If $\alpha ,\;\beta ,\;\gamma $ are the geometric means between $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ respectively where $a,\;b,\;c$ are in A.P., then ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ are in