- Home
- Standard 11
- Mathematics
8. Sequences and Series
medium
The sum of the integers from $1$ to $100$ which are not divisible by $3$ or $5$ is
A
$2489$
B
$4735$
C
$2317$
D
$2632$
Solution
(d) Let $S = 1 + 2 + 3 + ……….. + 100$
$ = \frac{{100}}{2}(1 + 100) = 50(101) = 5050$
Let ${S_1} = 3 + 6 + 9 + 12 + ……… + 99$
=$3(1 + 2 + 3 + 4 + ……… + 33)$
=$3.\frac{{33}}{2}(1 + 33) = 99 \times 17 = 1683$
Let ${S_2} = 5 + 10 + 15 + …….. + 100$
= $5(1 + 2 + 3 + …….. + 20)$
= $5.\frac{{20}}{2}(1 + 20) = 50 \times 21 = 1050$
Let ${S_3} = 15 + 30 + 45 + …….. + 90$
= $15(1 + 2 + 3 + …….. + 6)$
= $15.\frac{6}{2}(1 + 6) = 45 \times 7 = 315$
Required sum =$S – {S_1} – {S_2} + {S_3}$
= $5050 – 1683 – 1050 + 315= 2632.$
Standard 11
Mathematics