If in the equation $a{x^2} + bx + c = 0,$ the sum of roots is equal to sum of square of their reciprocals, then $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ are in
$A.P.$
$G.P.$
$H.P.$
None of these
Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f ( x )=\alpha x ^{5}+\beta x ^{3}+\gamma x , x \in R \quad$ and $\quad g : R \rightarrow R$ be such that $g(f(x))=x$ for all $x \in R$. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to.
If the sum of $n$ terms of an $A.P.$ is $nA + {n^2}B$, where $A,B$ are constants, then its common difference will be
If twice the $11^{th}$ term of an $A.P.$ is equal to $7$ times of its $21^{st}$ term, then its $25^{th}$ term is equal to
If the angles of a quadrilateral are in $A.P.$ whose common difference is ${10^o}$, then the angles of the quadrilateral are
Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$