If in the equation $a{x^2} + bx + c = 0,$ the sum of roots is equal to sum of square of their reciprocals, then $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ are in

  • A

    $A.P.$

  • B

    $G.P.$

  • C

    $H.P.$

  • D

    None of these

Similar Questions

The ratio of the sums of first $n$ even numbers and $n$ odd numbers will be

${7^{th}}$ term of an $A.P.$ is $40$, then the sum of first $13$ terms is

If $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ are in $A.P.,$ then :-

If $\frac{1}{{b - c}},\;\frac{1}{{c - a}},\;\frac{1}{{a - b}}$ be consecutive terms of an $A.P.$, then ${(b - c)^2},\;{(c - a)^2},\;{(a - b)^2}$ will be in

If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in arithmetic progression and $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ are also in arithmetic progression, then $|x-2 y|$ is equal to:

  • [JEE MAIN 2021]