Gujarati
8. Sequences and Series
hard

If in the equation $a{x^2} + bx + c = 0,$ the sum of roots is equal to sum of square of their reciprocals, then $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ are in

A

$A.P.$

B

$G.P.$

C

$H.P.$

D

None of these

Solution

(a) $\alpha + \beta = \frac{1}{{{\alpha ^2}}} + \frac{1}{{{\beta ^2}}} = $ $\frac{{{\alpha ^2} + {\beta ^2}}}{{{{(\alpha \,\beta )}^2}}}$

$ = \frac{{{{(\alpha + \beta )}^2} – 2\alpha \beta }}{{{{(\alpha \,\beta )}^2}}}$…..(i)

$\alpha + \beta = – b/a$and $\alpha \beta = c/a$

Putting these value in (i)

==> $\left( {\frac{{ – b}}{a}} \right)\,\left( {\frac{{{c^2}}}{{{a^2}}}} \right) = \frac{{{b^2}}}{{{a^2}}} – \frac{{2c}}{a}$

or $ – b{c^2} = a{b^2} – 2c{a^2}$or $2c\,{a^2} = a{b^2} + b{c^2}$

Dividing by abc we get, $\frac{{2a}}{b} = \frac{b}{c} + \frac{c}{a}$

==> $\frac{c}{a},\frac{a}{b},\frac{b}{c}$ are in $A.P.$ 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.