तीन समान्तर श्रेणियों के $n$ पदों के योगफल${S_1},\;{S_2},\;{S_3}$ हैं जिनके प्रथम पद $1$ और सार्वअन्तर क्रमश: $1, 2, 3$ हैं, तो सत्य सम्बन्ध होगा
${S_1} + {S_3} = {S_2}$
${S_1} + {S_3} = 2{S_2}$
${S_1} + {S_2} = 2{S_3}$
${S_1} + {S_2} = {S_3}$
यदि समान्तर श्रेणी के $n$ पदों का योग $3{n^2} + 5n$ व ${T_m} = 164$ हो, तो $m = $
यदि $a$ और $b$के बीच का समान्तर माध्य $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$है, तो $n$ का मान होगा
एक आदमी ने एक बैंक में $10000$ रुपये $5 \%$ वार्षिक साधारण ब्याज पर जमा किया। जब से रकम बैंक में जमा की गई तब से, $15$ वें वर्ष में उसके खातें में कितनी रकम हो गई, तथा $20$ वर्षो बाद कुल कितनी रकम हो गई, ज्ञात कीजिए।
पाँच संख्याएँ समान्तर श्रेढी में हैं, जिनका योगफल $25$ तथा गुणनफल $2520$ हैं यदि इन पाँच संख्याओं में से एक $-\frac{1}{2}$ है, तो इनमें सबसे बडी संख्या है
किसी समांतर श्रेणी के $m$ तथा $n$ पदों के योगफलों का अनुपात $m^{2}: n^{2}$ है तो दर्शाइए कि $m$ वें तथा $n$ वें पदों का अनुपात $(2 m-1):(2 n-1)$ है।