The system of linear equations $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$has a unique solution if
$k \ne 0$
$ - 1 < k < 1$
$ - 2 < k < 2$
$k = 0$
The values of $\lambda$ and $\mu$ for which the system of linear equations
$x+y+z=2$
$x+2 y+3 z=5$
$x+3 y+\lambda z=\mu$
has infinitely many solutions are, respectively
If the system of linear equations $x+ ay+z\,= 3$ ; $x + 2y+ 2z\, = 6$ ; $x+5y+ 3z\, = b$ has no solution, then
The value of $k \in R$, for which the following system of linear equations
$3 x-y+4 z=3$
$x+2 y-3 x=-2$
$6 x+5 y+k z=-3$
has infinitely many solutions, is:
Number of values of $m$ for which the lines $x + y - 1 = 0$, $(m - 1) x + (m^2 - 7) y - 5 = 0 \,\,\&\,\, (m - 2) x + (2m - 5) y = 0$ are concurrent, are
The system of equations $\lambda x + y + z = 0,$ $ - x + \lambda y + z = 0,$ $ - x - y + \lambda z = 0$, will have a non zero solution if real values of $\lambda $ are given by