रेखीय समीकरण निकाय $x + y + z = 2$, $2x + y - z = 3,$ $3x + 2y + kz = 4$ अद्वितीय हल रखता है, यदि
$k \ne 0$
$ - 1 < k < 1$
$ - 2 < k < 2$
$k = 0$
माना कुछ $\alpha, \beta \in \mathbb{R}$ के लिये समीकरण निकाय $ \alpha x+2 y+z=1 $ $ 2 \alpha x+3 y+z=1 $ $ 3 x+\alpha y+2 z=\beta$ है। निम्न में से कौनसा सही नहीं है
यदि $a, b, c$ शून्येतर वास्तविक संख्याएँ हैं तथा यदि समीकरण निकाय $(a-1) x=y+z$; $(b-1) y=z+x$; $(c-1) z=x+y$ का एक अतुच्छ हल है, तो $a b+b c+c a$ बराबर है
माना $p$ तथा $p +2$ अभाज्य संख्याएँ हैं तथा माना $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ है। तब $\alpha$ तथा $\beta$ के अधिकतम मानों, जिनके लिए $p ^\alpha$ तथा $( p +2)^\beta, \Delta$ को विभाजित करते हैं, का योग है $...........$
यदि $a > 0$ और $a{x^2} + 2bx + c$ का विविक्तिकर ऋणात्मक है, तब $\left| {\,\begin{array}{*{20}{c}}a&b&{ax + b}\\b&c&{bx + c}\\{ax + b}&{bx + c}&0\end{array}\,} \right|$ का मान होगा
यदि $x = cy + bz,\,\,y = az + cx,\,\,z = bx + ay$ (जहाँ $ x, y, z$ सभी शून्य नहीं हैं) का $x = 0$,$y = 0$,$z = 0$ के अतिरिक्त भी कोई हल है, तो $a, b $ और $ c$ में सम्बन्ध है