- Home
- Standard 11
- Physics
11.Thermodynamics
medium
The temperature of a hypothetical gas increases to $\sqrt 2 $ times when compressed adiabatically to half the volume. Its equation can be written as
A
$P{V^{3/2}}$= constant
B
$P{V^{5/2}}$= constant
C
$P{V^{7/3}}$= constant
D
$P{V^{4/3}}$= constant
Solution
(a) $T{V^{\gamma – 1}}$= constant
$\therefore \frac{{{T_1}}}{{{T_2}}} = {\left( {\frac{{{V_2}}}{{{V_1}}}} \right)^{\gamma – 1}}$or ${\left( {\frac{1}{2}} \right)^{\gamma – 1}} = \sqrt {\frac{1}{2}} $
$\therefore \gamma – 1 = \frac{1}{2}$or $\gamma = \frac{3}{2}$
$P{V^{3/2}}$= constant
Standard 11
Physics