The temperature of a metal coin is increased by $100^{\circ} C$ and its diameter increases by $0.15 \%$. Its area increases by nearly

  • [KVPY 2009]
  • A

    $0.15 \%$

  • B

    $0.30 \%$

  • C

    $0.60 \%$

  • D

    $0.0225 \%$

Similar Questions

In the expression for time period $T$ of simple pendulum $T=2 \pi \sqrt{\frac{l}{g}}$, if the percentage error in time period $T$ and length $l$ are $2 \%$ and $2 \%$ respectively then percentage error in acceleration due to gravity $g$ is equal to ......... $\%$

The length $l$, breadth b and thickness t of a block of wood were measured with the help of a measuring scale. The results with permissible errors are $l=15.12 \pm 0.01\; cm , t =5.28 \pm 0.01 \;cm$ $b =10.15 \pm 0.01\; cm$. The percentage error in volume upto proper significant figures is

Students $I$, $II$ and $III$ perform an experiment for measuring the acceleration due to gravity $(g)$ using a simple pendulum.

They use different lengths of the pendulum and /or record time for different number of oscillations. The observations are shown in the table.

Least count for length $=0.1 \mathrm{~cm}$

Least count for time $=0.1 \mathrm{~s}$

Student Length of the pendulum $(cm)$ Number of oscillations $(n)$ Total time for $(n)$ oscillations $(s)$ Time period $(s)$
$I.$ $64.0$ $8$ $128.0$ $16.0$
$II.$ $64.0$ $4$ $64.0$ $16.0$
$III.$ $20.0$ $4$ $36.0$ $9.0$

If $\mathrm{E}_{\mathrm{I}}, \mathrm{E}_{\text {II }}$ and $\mathrm{E}_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100\right)$ for students $\mathrm{I}, \mathrm{II}$ and III, respectively,

  • [IIT 2008]

The least count of stop watch is $\frac{1}{5}\,second$. The time of $20$ oscillations of pendulum is measured to be $25\,seconds$. Then percentage error in the measurement of time will be.......... $\%$

A physical quantity $X$ is related to four measurable quantities $a,\, b,\, c$ and $d$ as follows $X = a^2b^3c^{\frac {5}{2}}d^{-2}$. The percentange error in the measurement of $a,\, b,\, c$ and $d$ are $1\,\%$, $2\,\%$, $3\,\%$ and $4\,\%$ respectively. What is the percentage error in quantity $X$ ? If the value of $X$ calculated on the basis of the above relation is $2.763$, to what value should you round off the result.