7.Binomial Theorem
hard

The term independent of $x$ in the expansion of $\left[\frac{x+1}{x^{2 / 3}-x^{1 / 3}+1}-\frac{x-1}{x-x^{1 / 2}}\right]^{10}, x \neq 1,$ is equal to ....... .

A

$240$

B

$225$

C

$210$

D

$196$

(JEE MAIN-2021)

Solution

$\left.\left( x ^{1 / 3}+1\right)-\left(\frac{\sqrt{ x }+1}{\sqrt{ x }}\right)\right)^{10}$

$\left( x ^{1 / 3}- x ^{-1 / 2}\right)^{10}$

$T _{ r +1}={ }^{10} C _{ r }\left( x ^{1 / 3}\right)^{10- r }\left(- x ^{-1 / 2}\right)^{ r }$

$\frac{10- r }{3}-\frac{ r }{2}=0 \Rightarrow 20-2 r -3 r =0$

$\Rightarrow r =4$

$T _{5}={ }^{10} C _{4}=\frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1}=210$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.