- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
Coefficient of ${t^{12}}$ in ${\left( {1 + {t^2}} \right)^6}\left( {1 + {t^6}} \right)\left( {1 + {t^{12}}} \right)$ is-
A
$24$
B
$21$
C
$22$
D
$23$
Solution
$\left(1+t^{2}\right)^{6}\left(1+t^{2}+t^{12}+t^{18}\right)$
coeff of $t^{12}$ in $\left(1+t^{2}\right)^{6}+$ coeff of $t^{6}$ in $\left(1+t^{2}\right)^{6}+$
coeff. of $t^{\circ}$ in $\left(1+t^{2}\right)^{6}$
$^{6} \mathrm{C}_{6}+^{6} \mathrm{C}_{3}+^{6} \mathrm{C}_{0}$
$22$
Standard 11
Mathematics
Similar Questions
hard