दिये गये चित्र में $\mathrm{M}$ द्रव्यमान के गुटके की सरल आवर्त गति का आवर्तकाल $\pi \sqrt{\frac{\alpha \mathrm{M}}{5 \mathrm{~K}}}$ है, जहाँ $\alpha$ का मान. . . . . . . . . . है।

221079-q

  • [JEE MAIN 2024]
  • A

    $12$

  • B

    $15$

  • C

    $30$

  • D

    $35$

Similar Questions

एक स्प्रिंग तुला की स्केल $0$ से  $10\, kg$ तक मापन करती है तथा इसकी लम्बाई $0.25\, m$ है। स्प्रिंग तुला से लटकी हुई एक वस्तु $\frac{\pi }{{10}}\sec$ के आवर्तकाल से ऊध्र्वाधर दोलन करती है। लटकी हुई वस्तु का द्रव्यमान ..... $kg$ होगा, (स्प्रिंग का द्रव्यमान नगण्य है) 

चित्र में दिखायी गई स्प्रिंगों के दोलन की आवृत्ति होगी

  • [AIIMS 2001]

एक द्रव्यमान $M$ एक नगण्य द्रव्यमान की स्प्रिंग से लटक रहा है। ​स्प्रिंग को थोड़ा सा खींच कर छोड़ने पर द्रव्यमान आवर्तकाल $T$ से दोलन करने लगता है यदि द्रव्यमान में वृद्धि $m$ कर दी जाये तो आवर्तकाल $\frac{{5T}}{3}$ हो जाता है। तो  $\frac{m}{M}$ का मान है

  • [AIIMS 2016]

चित्र $(a)$ में $k$ बल-स्थिरांक की किसी कमानी के एक सिरे को किसी दृढ़ आधार से जकड़ा तथा दूसरे मुक्त सिरे से एक द्रव्यमान $m$ जुड़ा दर्शाया गया है । कमानी के मुक्त सिरे पर बल $F$ आरोपित करने से कमानी तन जाती है । चित्र $(b)$ में उसी कमानी के दोनों मुक्त सिरों से द्रव्यमान $m$ जुड़ा दर्शाया गया है । कमानी के दोनों सिरों को चित्र में समान बल $F$ द्वारा तानित किया गया है ।

$(a)$ दोनों प्रकरणों में कमानी का अधिकतम विस्तार क्या है ?

$(b)$ यदि $(a)$ का द्रव्यमान तथा $(b)$ के दोनों द्रव्यमानों को मुक्त छोड़ दिया जाए, तो प्रत्येक प्रकरण में दोलन का आवर्तकाल ज्ञात कीजिए ।

चित्रानुसार एक द्रव्यमान $M$ दो स्प्रिंगों $A$ तथा $B$ से चित्रानुसार लटकाया गया है। स्प्रिंगों के बल नियतांक क्रमषः  $K_1$ तथा  $K_2$  हैं। दोनों स्प्रिंगों की लम्बाई में कुल वृद्धि है