निचे दिए गए चित्र में, $\mathrm{M}=490 \mathrm{~g}$ द्रव्यमान का एक गुटका एक घर्षणरहित मेज पर रखा है, एवं समान स्प्रिंग नियतांक $\left(\mathrm{K}=2 \mathrm{~N} \mathrm{~m}^{-1}\right)$ वाली दो स्प्रिंगों से जुडा है। यदि गुटके को ' $\mathrm{X}$ ' $\mathrm{m}$ की क्षैतिज दूरी से विस्थापित किया जाता है, तो $14 \pi$ सेकन्ड में इसके द्वारा पूर्ण किए गए दोलनों की संख्या होगी।
$20$
$21$
$19$
$26$
एक $m$ द्रव्यमान को नगण्य द्रव्यमान के स्प्रिंग से लटकाया जाता है तथा निकाय $f_1$ आवृत्ति से दोलन करता है। यदि समान स्प्रिंग से $9$ मी. द्रव्यमान लटकाने पर दोलन की आवृत्ति $f_2$ है। $\frac{f_1}{f_2}$ का मान. . . . . . . हैं
एक $m = 100$ ग्राम संहति वाले पिण्ड को एक हल्की स्प्रिंग् के एक सिरे से जोड़ दिया जाता है। स्प्रिंग् एक घर्षणहीन क्षैतिज टेबिल पर दोलन करती है। दोलनों का आयाम $0.16$ मीटर और आवर्तकाल $2$ सैकण्ड है। प्रारम्भ में $t = 0$ सैकण्ड पर जबकि विस्थापन $x = - 0.16$ मीटर है, पिण्ड को छोड़ा जाता है, तो पिण्ड के विस्थापन का किसी समय $(t)$ पर सूत्र होगा
यदि दो सर्वसम कमानियों, जिनमें प्रत्येक का कमानी स्थिरांक $K _{1}$ हैं, को श्रेणी में संयोजित किया गया है, तो नया कमानी स्थिरांक और आवर्तकाल किस गुणांक से परिवर्तित होंगे ?
समान स्प्रिंग् नियतांक $k$ वाली दो स्प्रिंगों को श्रेणीक्रम में जोड़ा जाता है तथा बाद में समान्तर क्रम में जोड़ते हैं। यदि इनसे $m$द्रव्यमान का पिण्ड लटका है तो उनकी ऊध्र्वाधर दोलनों की आवृत्तियों का अनुपात होगा
चित्र में दिखायी गई स्प्रिंगों के दोलन की आवृत्ति होगी