3 and 4 .Determinants and Matrices
normal

અહી $x =\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ અને $A =\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$ આપેલ છે. જો $k \in N$, if $X ^{\prime} A ^{ k } X =33$, હોય તો  $k$ ની કિમંત મેળવો.

A

$99$

B

$100$

C

$23$

D

$10$

(JEE MAIN-2022)

Solution

$X =\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] ; A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$

$X^{ T } A ^{ K } X =33$

${\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]^{ k }\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33 }$

${\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33 }$

As $A^{2}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$A ^{4}=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$A ^{8}=\left[\begin{array}{llll}1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$A^{10}=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 30 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

for $K \rightarrow$ Even $A ^{ K }=\left[\begin{array}{ccc}1 & 0 & 3 K \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$X ^{ T } A ^{ K } X =33$ (This is not correct)

1] $\left[\begin{array}{ccc}1 & 0 & 3 K \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$

$X ^{ T } A ^{ K } X =33$ (This is not correct)

$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 3 K \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$=\left[\begin{array}{lll}1 & 1 & 3 K +1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=[3 K +3]$

$\therefore 3 K +3=33 \therefore K =10$

$\therefore 3 K +3=33 \therefore K =10$

But it should be dropped as 33 is not matrix

If $K$ is odd

$\begin{array}{l}X^{ T } A^{ K } X =33 \\X ^{ T } AA ^{ K -1} X =33\end{array}$

$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 3 k-3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33$

${\left[\begin{array}{lll}-1 & 3 & 8\end{array}\right]\left[\begin{array}{l}3 k -2 \\ 1 \\ 1\end{array}\right]=[33] }$

${[-3 k +13]=[33] }$

$k =20 / 3$ (not possible)

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.