The total number or irrational terms in the binomial expansion of $\left( {{7^{1/5}} - {3^{1/10}}} \right)^{60}$ is
$55$
$49$
$48$
$54$
The greatest value of the term independent of $x$ in the expansion of ${\left( {x\sin \theta + \frac{{\cos \theta }}{x}} \right)^{10}}$ is
If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then
In ${\left( {\sqrt[3]{2} + \frac{1}{{\sqrt[3]{3}}}} \right)^n}$ if the ratio of ${7^{th}}$ term from the beginning to the ${7^{th}}$ term from the end is $\frac{1}{6}$, then $n = $
If the coefficients of $x^7$ in $\left( ax ^2+\frac{1}{2 bx }\right)^{11}$ and $x ^{-7}$ in $\left(a x-\frac{1}{3 b x^2}\right)^{11}$ are equal, then
If the coefficients of ${r^{th}}$ term and ${(r + 4)^{th}}$ term are equal in the expansion of ${(1 + x)^{20}}$, then the value of r will be