The total number or irrational terms in the binomial expansion of $\left( {{7^{1/5}} - {3^{1/10}}} \right)^{60}$ is 

  • [JEE MAIN 2019]
  • A

    $55$

  • B

    $49$

  • C

    $48$

  • D

    $54$

Similar Questions

The positive value of $\lambda $ for which the co-efficient of $x^2$ in the expression ${x^2}{\left( {\sqrt x  + \frac{\lambda }{{{x^2}}}} \right)^{10}}$ is $720$ is

  • [JEE MAIN 2019]

Let the coefficients of third, fourth and fifth terms in the expansion of $\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0,$ be in the ratio $12: 8: 3 .$ Then the term independent of $x$ in the expansion, is equal to ...... .

  • [JEE MAIN 2021]

Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?

$(A)$ $Z \cup T_1 \cup T_2 \subset S$

$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set

$(C)$ $T_2 \cap(2024, \infty) \neq \phi$

$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$

  • [IIT 2024]

If in the expansion of ${(1 + x)^m}{(1 - x)^n}$, the coefficient of $x$ and ${x^2}$ are $3$ and $-6$ respectively, then m is

  • [IIT 1999]

${16^{th}}$ term in the expansion of ${(\sqrt x - \sqrt y )^{17}}$ is