The total number or irrational terms in the binomial expansion of $\left( {{7^{1/5}} - {3^{1/10}}} \right)^{60}$ is
$55$
$49$
$48$
$54$
The positive value of $\lambda $ for which the co-efficient of $x^2$ in the expression ${x^2}{\left( {\sqrt x + \frac{\lambda }{{{x^2}}}} \right)^{10}}$ is $720$ is
Let the coefficients of third, fourth and fifth terms in the expansion of $\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0,$ be in the ratio $12: 8: 3 .$ Then the term independent of $x$ in the expansion, is equal to ...... .
Let $S=\{a+b \sqrt{2}: a, b \in Z \}, T_1=\left\{(-1+\sqrt{2})^n: n \in N \right\}$ and $T_2=\left\{(1+\sqrt{2})^n: n \in N \right\}$. Then which of the following statements is (are) $TRUE$?
$(A)$ $Z \cup T_1 \cup T_2 \subset S$
$(B)$ $T_1 \cap\left(0, \frac{1}{2024}\right)=\phi$, where $\phi$ denotes the empty set
$(C)$ $T_2 \cap(2024, \infty) \neq \phi$
$(D)$ For any given $a, b \in Z , \cos (\pi(a+b \sqrt{2}))+i \sin (\pi(a+b \sqrt{2})) \in Z$ if and only if $b=0$, where $i=\sqrt{-1}$
If in the expansion of ${(1 + x)^m}{(1 - x)^n}$, the coefficient of $x$ and ${x^2}$ are $3$ and $-6$ respectively, then m is
${16^{th}}$ term in the expansion of ${(\sqrt x - \sqrt y )^{17}}$ is