The product of the roots of the equation $9 x^{2}-18|x|+5=0,$ is
$\frac{25}{9}$
$\frac{25}{81}$
$\frac{5}{27}$
$\frac{5}{9}$
Let $[t]$ denote the greatest integer $\leq t .$ Then the equation in $x ,[ x ]^{2}+2[ x +2]-7=0$ has
All the points $(x, y)$ in the plane satisfying the equation $x^2+2 x \sin (x y)+1=0$ lie on
Let $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$
If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{1 / 5}$ and $\beta^{1 / 5}$, then the value of $c-b$ is equal to:
The number of solutions of the equation $\log _{(x+1)}\left(2 x^{2}+7 x+5\right)+\log _{(2 x+5)}(x+1)^{2}-4=0, x\,>\,0$, is $....$
The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies