The two vectors $\vec A$ and $\vec B$ that are parallel to each other are

  • A

    $\vec A = 3\hat i + 6\hat j + 9\hat k$     $\vec B = \hat i + 2\hat j + 3\hat k$

  • B

    $\vec A = 3\hat i - 6\hat j + 9\hat k$     $\vec B = \hat i + 2\hat j + 3\hat k$

  • C

    $\vec A = 2\hat i + 6\hat j - 9\hat k$     $\vec B = \hat i + 2\hat j - 3\hat k$

  • D

    $\vec A = 2\hat i + 3\hat j + 3\hat k$     $\vec B = \hat i - 2\hat j - 3\hat k$

Similar Questions

The area of the parallelogram whose sides are represented by the vectors $\hat j + 3\hat k$ and $\hat i + 2\hat j - \hat k$ is

Two forces ${\vec F_1} = 5\hat i + 10\hat j - 20\hat k$ and ${\vec F_2} = 10\hat i - 5\hat j - 15\hat k$ act on a single point. The angle between ${\vec F_1}$ and ${\vec F_2}$ is nearly ....... $^o$

For any two vectors $\overrightarrow A $ and $\overrightarrow B $, if $\overrightarrow A \,.\,\overrightarrow B = \,\,|\overrightarrow A \times \overrightarrow B |,$ the magnitude of $\overrightarrow C = \overrightarrow A + \overrightarrow B $ is equal to

Unit vector perpendicular to vector $A =-3 \hat{ i }-2 \hat{ j }-3 \hat{ k }$ and $B =2 \hat{ i }+4 \hat{ j }+6 \hat{ k }$ both is

The angle between two vectors $ - 2\hat i + 3\hat j + \hat k$ and $\hat i + 2\hat j - 4\hat k$ is ....... $^o$