પ્રતિશત ત્રુટીનો એકમ શું થાય?
તેની ભૌતિક રાશિ જેવો થાય
તેની ભૌતિક રાશિથી અલગ થાય
પ્રતિશત ત્રુટી એકમ રહિત છે
ત્રુટીને પોતાનો એકમ હોય છે જે માપેલી ભૌતિક રાશિ કરતાં અલગ હોય છે
બરાબર $1\,m$ લંબાઈના તારનો યંગ મોડ્યુલસ માપવાના એક પ્રયોગમાં $1\,kg$ ભાર લગાડતાં, તારની લંબાઈમાં થતો વધારો $0.4\,mm$ જેટલો વધારો $\pm 0.02\,mm$ ની અનિશ્ચિતતા સાથે નોંધવામાં આવે છે. તારનો વ્યાસ $\pm 0.01\,mm$ ની અનિશ્ચિતતા સાથે $0.4\,mm$ નોંધવામાં આવે છે. યંગ મોડયુલસના માપનમાં ત્રુટી $(\Delta Y ) \; x \times 10^{10}\,Nm ^{-2}$ મળે છે. $x$ નું મૂલ્ય કેટલું હશે?
($g=10\,ms ^{-2}$ લો.)
પ્રાયોગિક રીતે માપેલ રાશિઓ $a, b$ અને $c $ અને $X$ ને $X = ab^2/C^3$ સૂત્રથી દર્શાવવામાં આવે છે. જો $a, b $ અને $c $ ની પ્રતિશત ત્રુટિ અનુક્રમે $\pm 1\%, 3\% $ અને $2\%$ હોય તો $X$ ની પ્રતિશત ત્રુટિ કેટલી હશે ?
એક વિદ્યાર્થી તારનો યંગ મોડ્યુલસ શોધવા $Y=\frac{M g L^{3}}{4 b d^{3} \delta}$ સૂત્રનો ઉપયોગ કરે છે. $g$ નું મૂલ્ય કોઈ પણ સાર્થક ત્રુટિ વગર $9.8 \,{m} / {s}^{2}$ છે. તેને લીધેલા અવલોકનો નીચે મુજબ છે.
ભૌતિક રાશિ | માપન માટે લીધેલા સાધનની લઘુતમ માપશક્તિ | અવલોકનનું મૂલ્ય |
દળ $({M})$ | $1\; {g}$ | $2\; {kg}$ |
સળિયાની લંબાઈ $(L)$ | $1 \;{mm}$ | $1 \;{m}$ |
સળિયાની પહોળાય $(b)$ | $0.1\; {mm}$ | $4 \;{cm}$ |
સળિયાની જાડાઈ $(d)$ | $0.01\; {mm}$ | $0.4\; {cm}$ |
વંકન $(\delta)$ | $0.01\; {mm}$ | $5 \;{mm}$ |
તો $Y$ ના માપનમાં આંશિક ત્રુટિ કેટલી હશે?
કોઈ એક પદાર્થનુ દળ $22.42\;g$ અને કદ $4.7 \;cc$ છે. દળ અને કદના માપનમાં અનુક્રમે $0.01\; gm$ અને $0.1 \;cc$ જેટલી ત્રુટિ છે. તો ઘનતાના માપનમાં મહત્તમ ત્રુટિ ($\%$ માં) કેટલી હશે?
$g$ ના માપનમાં પ્રતિશત ત્રુટિ $.....\%$ હોય
(આપેલ : $g =\frac{4 \pi^2 L }{ T ^2}, L =(10 \pm 0.1) \,cm$, $T =(100 \pm 1)\,s )$