$\cos \,\frac{\pi }{7}\,\cos \,\frac{{2\pi }}{7}\,\cos \,\frac{{3\pi }}{7}$ =
$1/8$
$-1/8$
$1$
$0$
${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8} = $
$1 - 2{\sin ^2}\left( {\frac{\pi }{4} + \theta } \right) = $
સાબિત કરો કે : $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$
જો $A + B + C = {180^o},$ તો $(\cot B + \cot C)$ $(\cot C + \cot A)\,\,(\cot A + \cot B) = . . . .$
$\sin \frac{\pi }{{14}}\sin \frac{{3\pi }}{{14}}\sin \frac{{5\pi }}{{14}}\sin \frac{{7\pi }}{{14}}\sin \frac{{9\pi }}{{14}}\sin \frac{{11\pi }}{{14}}\sin \frac{{13\pi }}{{14}} = . . . .$